

Agenda

- 1. Brief Introduction
- 2. Small Diameter EMAT ILI
- 3. Gas-coupled Ultrasonic ILI

"Innovation, like evolution is a process of constantly discovering ways of rearranging the world into forms that are unlikely to arise by chance — and that happen to be useful."

- Matt Ridley, How Innovation Works

A Mini History Starting in 1991

MICROLINE ___

Doing a lot with a little

- Personnel
 - Highly trained technicians
 - More Level 3 Analysts than Level 1
- Insight Analysis Software
 - Fast, accurate reporting
 - Client interface is very user-friendly
- Advanced Technology

We need a reliable ILI system for assessing gas pipelines for cracks.

- A sound wave is a vibration that is transmitted through a medium.
- An ultrasonic wave is defined as an "inaudible sound wave, which humans cannot hear."

What sound does a pipeline make?

Although hammering the pipeline will generate sound within the pipe wall... the signal response is not going to tell you much!

Propagating ultrasonic waves

- Piezoelectric UT
 - A signal is produced by the transducer and transmitted into the pipe wall and back through a liquid medium.
- EMAT UT
 - Uses electromagnets to generate that sound wave within the pipe wall itself.

and EMAT are the ultrasonic method electrically manipulated to realize the controlled acoustic

Signal noise!

"Noisy" Data

- Small diameter = multiple reflections = signal congestion
- Difficult to discern what is a reflection and what is a flaw signal

"Failure is only the opportunity to begin again more intelligently."

— Henry Ford

Flaw Response is difficult to discern

What's the Solution?

Un-Constrained

 Creating v sophisticated algorithms by analyzing lots of actual vs. predicted data to filter out noise (read: so many digs!)

Constrained by Diameter

 Redesign the transducer to eliminate unnecessary noise on the front-end.

Unidirectional Ultrasound

- Send out one wave in CW direction
- CW wave is the interrogation signal
- CCW wave contains only flaw information

Transciever = Transmitter + Receiver

Significant improvement in signal-to-noise ratio

- Modified flaw sizing algorithm: wave only travels around the pipe once.
- More powerful magnets: Increases signal strength and therefore flaw signature response in relation to "noise."
- Redundant coverage in 6" and 8": Dedicated modules interrogate flaws in each direction (CW & CCW), which will help improve POD and POI.

Creativity loves constraints!

EMAT Combo Tools?

Cracks

Wall Loss

EMAT VS. UT

- Because the sound is generated in the part inspected instead of the transducer, EMAT is a completely non-contact technique.
 - Inspectioneering
- Advantages include less degradation of performance from:
 - Surface cleanliness
 - Speed
 - Curvature of the surface
 - Temperature of the steel

PRCI NDE 4-12 Participation

API and **AOPL**

2021: Investigating crack and crack-related defects interactive with the

long seam including:

- Fatigue cracks
- Hook cracks
- Lack of fusion defects
- Laminations

Navigability for small diameter and low-flow pipelines (8", 10", 12")

1.5D back-to-back bends: S and B2B20% restriction: full bore and plane bore

What's the Problem?

- Gas pipeline operators need higher resolution metal loss data.
- Conventional UT only works with a liquid couplant.
- Transmitting ultrasound from a solid to a gas and back is like trying to put light through a mirror.

What's the Solution?

- Effective non-contact ultrasonic wall thickness ILI tools i.e UT tools that work in gas.
- Piezoelectric Material—Develop single crystal PZT
 - PZT is the dominant piezoelectric material in nondestructive testing because of its high efficiency and power capability, but it is only available as a ceramic.
- It has been impossible to grow as a crystal . . .

"Innovation in materials is vital to realizing an advance that can be conceived but not built." – Matt Ridley, How Innovation Works

Innovative Collaboration

- Have successfully grown a single crystal PZT that when deployed in a transducer, meets desired requirements.
- This is a "First", despite 50 years of industry effort.

Inspection of Different Wall Thicknesses (at 250 psi)

8" pipe nominal 0.25" = 6.4 mm ± 0.8%

Nominal Thickness	9 mm step	8 mm step	7 mm step	6 mm step
Micrometer Measured Thickness	8.97 mm	7.98 mm	6.95 mm	5.99 mm
Gas-Coupled UT Measured Thickness	8.93 mm	7.97 mm	6.99 mm	5.96 mm

	Width		Length		Height	
	Actual	Measured	Actual	Measured	Actual	Measured
Defect 3	34 mm	38 mm	100.5 mm	98 mm	19-24 mm	18.3-24.19 mm
Defect 4	38 mm	39 mm	100 mm	101 mm	12.96 mm	13.01 mm

Deploy the Transducers!

- Metal loss: Prototypes have determined the thickness of a 6 mm steel plate to ± 0.05 mm at a standoff of 25 mm and a pressure of 250 psi.
- Deformation: Preliminary measurements surpass the capabilities of current caliper tools.

Conventional UT: ±0.5 mm

MFL: ± 1 mm

A new generation of EMAT and Gas-Coupled UT ILI

- EMAT: 8", 10" and 12" commercially available this year
- Gas-coupled UT: Develop an 8" ILI prototype tool. Completion expected in 2022.
- We are actively soliciting co-funding and testing partners for the development, testing and deployment of these vital ILI tools.

The more complex our problems become, the more creative our problem-solving needs to be!

