U.S. DOT

Pipeline and Hazardous Materials Safety Administration

August 29, 2019

William (Bill) Lowry, PE Community Liaison

Pipeline and Hazardous Materials Safety Administration

Today's Agenda

- Performance Measures/ Data & Statistics
- Pipeline Safety Research Development
 & Technology: Competitive Academic Agreement Program (CAAP)
- Risk Based Inspection Process
- Pipeline Technical Resources & other web resources

Pipeline and Hazardous Materials Safety Administration

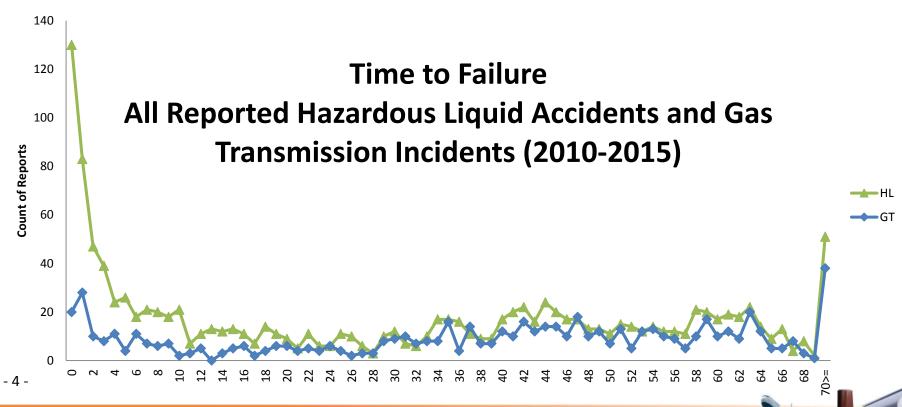
PHMSA Regulated Pipeline Facilities OPS and States

Pipeline Facilities by System Type					
System Type		Miles	% Miles	# Operators	
Hazardous Liquid	CY 2017	215,817 8,118 Tanks	8%	531	
Gas Transmission	CY 2018	301,147	11%	1,045	
Gas Gathering	CY 2018	17,556	1%	344	
Gas Distribution	CY 2018	2,234,528	80%	1,283	
Г					

 Total Miles
 2,769,048

Liquefied Natural Gas	157 Plants, 228 Tanks, 86 Operators				
CY 2018	Plants - 27 Interstate and 130 Intrastate				
Underground Natural Gas Storage	397 Facilities, 451 Reservoirs				
CY 2018	17,281 Wells, 124 Operators				
	Facilities - 221 Interstate and 176 Intrastate				

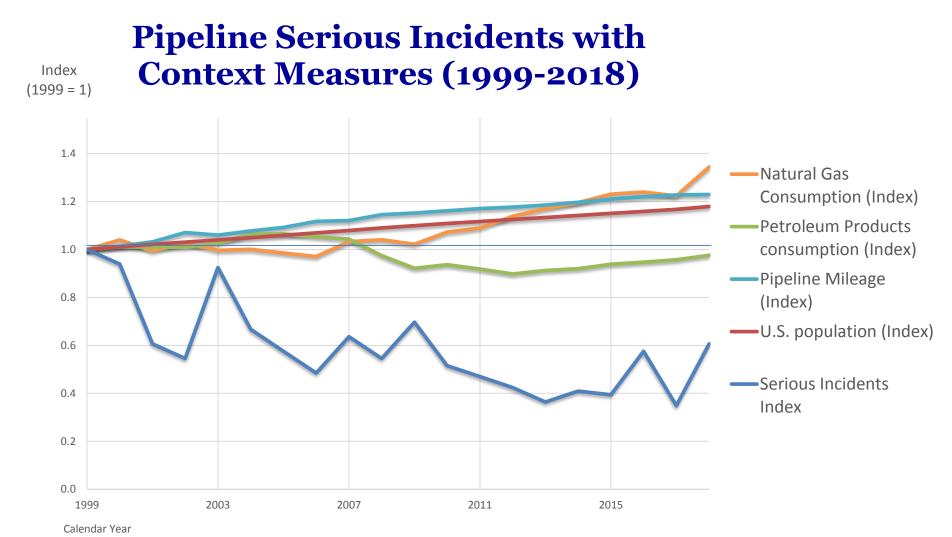
data as-of 3-27-2019


U.S. Department of Transportation

2

Pipeline and Hazardous Materials Safety Administration

Today's Environment


- Aging infrastructure
- Expanding new infrastructure

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Data Sources: Energy Information Administration, Census Bureau, PHMSA Annual Report Data, PHMSA Incident Data - as of 03/18/2019

PHMSA Annual Report Data, PHMSA Incident Data - as of 03/18/2019 EIA data preliminary for 2018

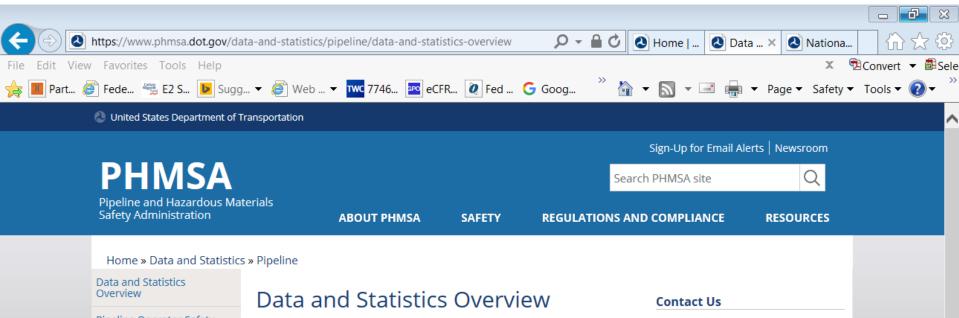
"To protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives."

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

Data and Statistics

The data and statistics are publicly available at: <u>https://www.phmsa.dot.gov/data-and-</u> <u>statistics/pipeline/data-and-statistics-overview</u>

Performance Measurement


<u>https://www.phmsa.dot.gov/data-and-</u> <u>statistics/pipeline/national-pipeline-performance-</u>

<u>measures</u>

Pipeline and Hazardous Materials Safety Administration

Data and Statistics

Pipeline Operator Safety Program Data

National Pipeline Performance Measures

State Pipeline Performance Measures

Pipeline Replacement Updates

Federal Enforcement Transparency

Operator Information

National Pipeline Mapping System PHMSA's Office of Pipeline Safety (OPS) provides a variety of data about federally-regulated and state-regulated natural gas pipelines, hazardous liquid pipelines, and liquefied natural gas (LNG) plants. The operators of these pipeline facilities report this data in accordance with <u>Part 191</u> and <u>Part 195</u> of PHMSA's <u>pipeline safety regulations</u>. PHMSA provides downloads of the raw data, yearly summaries, multi-year trends of safety performance metrics, and inventories tracking the removal of aging and other higher-risk infrastructure.

Frequently Requested Data

Pipeline Mileage and Facilities

Pipeline Incident Flagged Files

Pipeline Data and Statistics

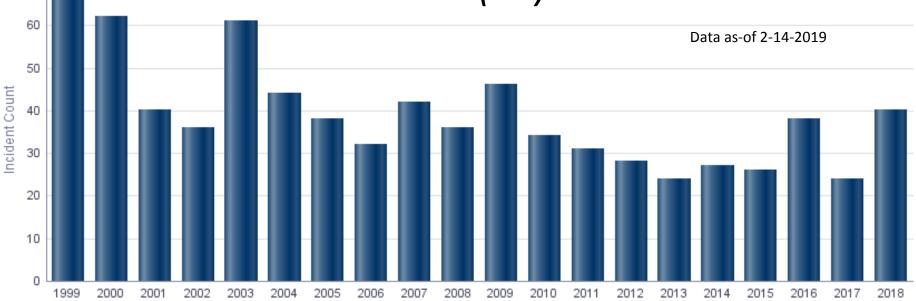
- U.S. Department of Transportation,
- Pipeline and Hazardous Materials Safety
- Administration
- 1200 New Jersey Avenue, SE
- Washington, DC 20590
- United States
- PHMSAPHPDataandStatistics@dot.gov⊠

Phone: 202-366-4595

Business Hours: 9:00am-5:00pm ET, M-F

 \sim

U.S. Department of Transportation

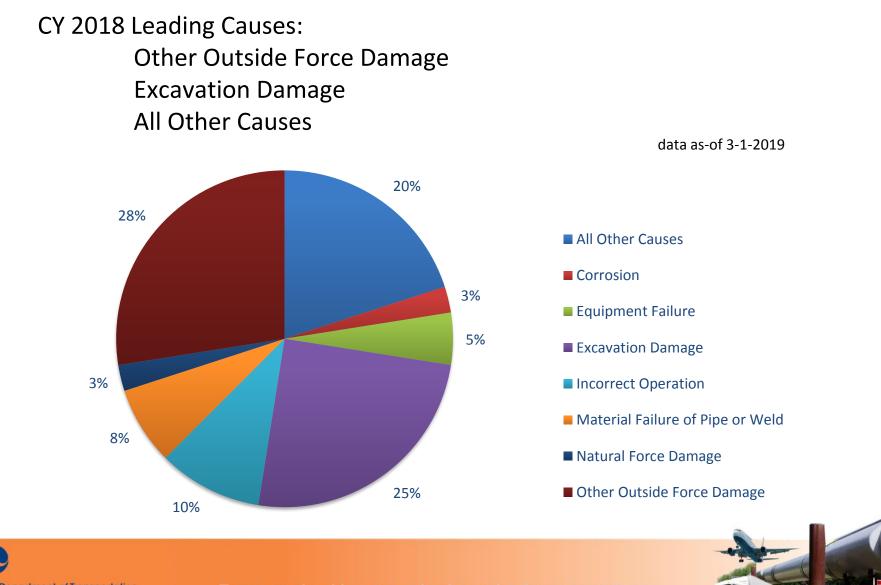

Pipeline and Hazardous Materials Safety Administration

Pipeline Incident 20 Year Trend	s × +						
← → C ▲ https://ww	w.phmsa.dot.gov/data-and-statistics/pipe	line/pipeline-inc	dent-20-year-trend	s 🏠	8 🛛 8 :		
				Sign-Up for Email	Alerts Newsroom		
PHMSA				Search PHMSA site	Q		
Pipeline and Hazardous Mate Safety Administration	erials ABOUT PHMSA	SAFETY	REGULATION	IS AND COMPLIANCE	RESOURCES		
Data and Statistics Overview	<u>SERIOUS INCIDENT 20 YEAR TREND</u> – Serious Incidents include a fatality or injury requiring in-patient hospitalization. From 2004 forward, gas distribution incidents caused by a nearby fire or explosion that impact the pipeline system are excluded.						
Pipeline Operator Safety Program Data							
National Pipeline Performance Measures	SIGNIFICANT INCIDENT 20 YEAR TREND - Significant incidents are those including any of the following conditions, but gas distribution incidents						
State Pipeline Performance Measures	caused by a nearby fire or explosion that impacted the pipeline system are excluded:						
Pipeline Replacement Updates	1. Fatality or injury requiring in-patient hospitalization 2. \$50,000 or more in total costs, measured in 1984 dollars						
Federal Enforcement Transparency	 Highly volatile liquid releases of 5 barrels or more or other liquid releases of 50 barrels or more 						
Operator Information	4. Liquid releases resulting in an	unintentional f	ire or explosion				
National Pipeline Mapping System	ALL REPORTED INCIDENT 20 YEAR	TREND - Includ	es all reports	2			
U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration	"To protect people and the environm and other hazardous mate			f energy			

Serious Incidents

Serious incidents in 2018 (40) increased 67% from 2017 (24)

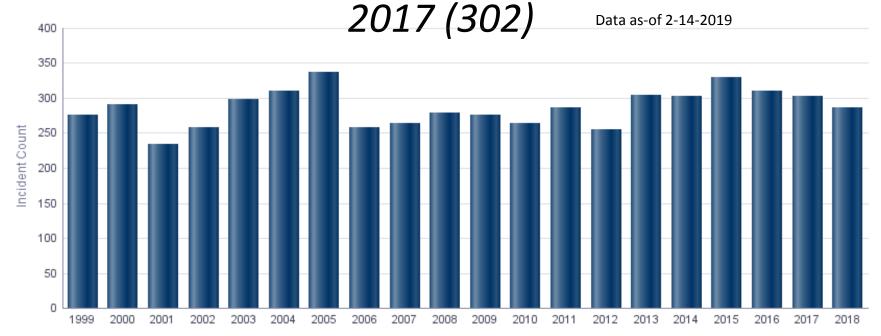
40 in CY 2018


- 90% Gas Distribution
- 2.5% Hazardous Liquid
- 7.5% Gas Transmission
 - 0% LNG, Gas Gathering, Underground Natural Gas Storage

Discling and Hazardous Materia

Pipeline and Hazardous Materials Safety Administration

2018 Serious Incidents by Cause



U.S. Department of Transportation Pipeline and Hazardous Materials

Safety Administration

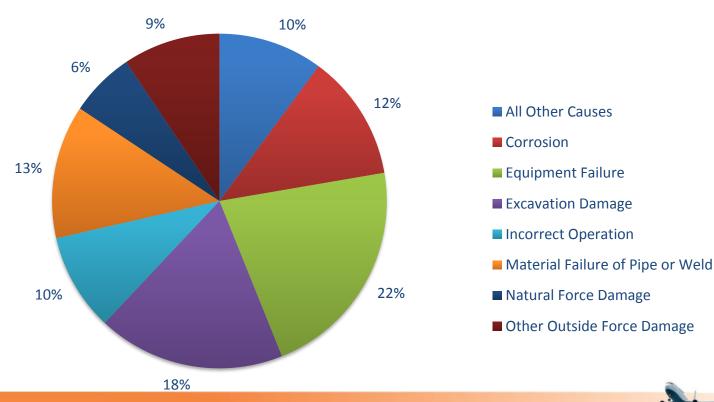
Significant Incidents

Significant Incidents in 2018 (285) declined 6% from

285 in CY 2018

26% Gas Distribution21% Gas Transmission<1% LNG

- <1% Gas Gathering
- 52% Hazardous Liquid
- <1% Underground NG Storage



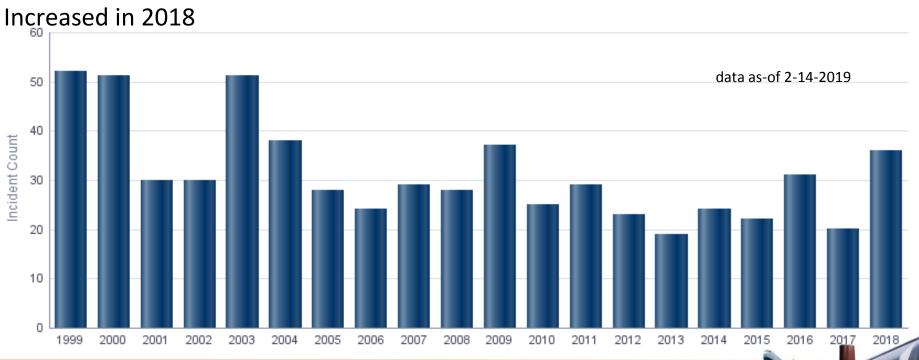
Pipeline and Hazardous Materials Safety Administration

2018 Significant Incidents by Cause

CY 2018 Leading Causes: Equipment Failure Excavation Damage Material Failure of Pipe or Weld

U.S. Department of Transportation

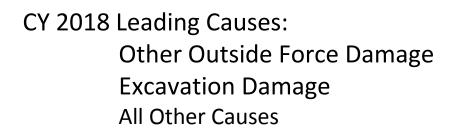
Pipeline and Hazardous Materials Safety Administration "To protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives."

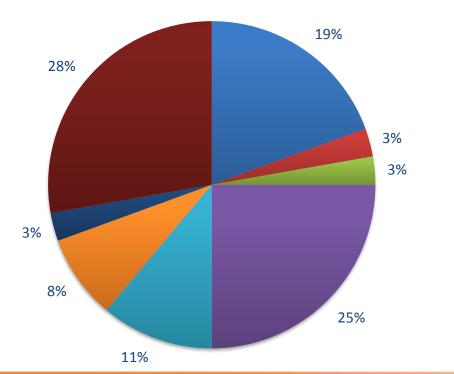

data as-of 3-1-2019

Gas Distribution Serious Incidents

All System Types Increased in 2018

Gas Distribution

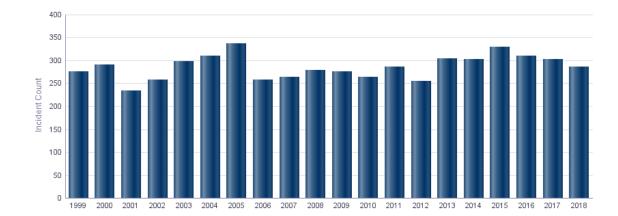



U.S. Department of Transportation

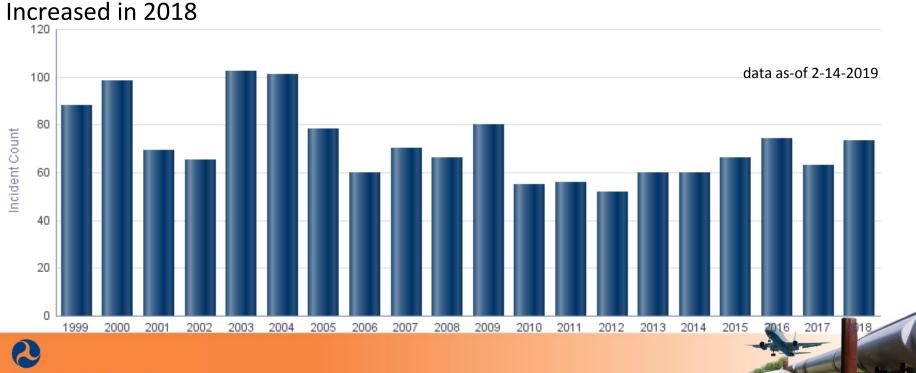
Pipeline and Hazardous Materials Safety Administration

Gas Distribution Serious Incidents

data as-of 3-1-2019


- Equipment Failure
- Excavation Damage
- Incorrect Operation
- Material Failure of Pipe or Weld
- Natural Force Damage
- Other Outside Force Damage

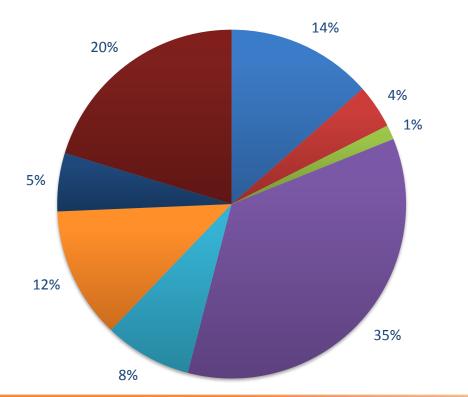
U.S. Department of Transportation


Pipeline and Hazardous Materials Safety Administration

Gas Distribution Significant Incidents

All System Types Decreased in 2018

U.S. Department of Transportation


Pipeline and Hazardous Materials Safety Administration

Gas Distribution Significant Incidents

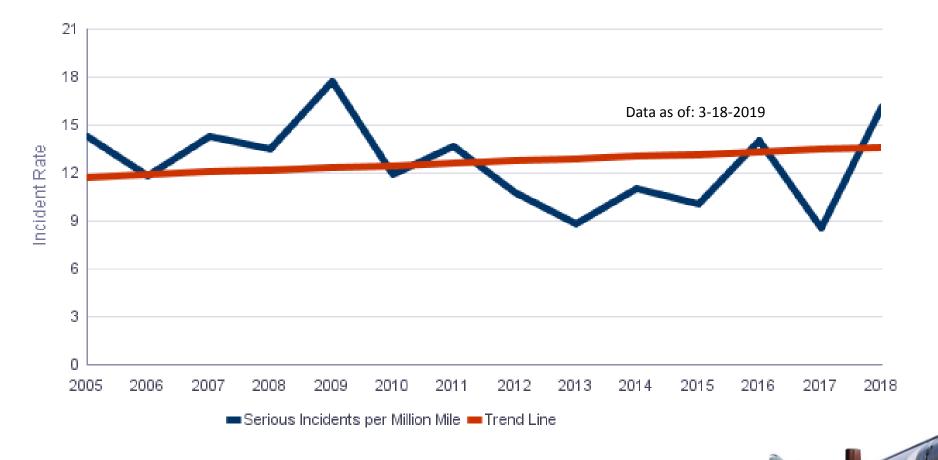
CY 2018 Leading Causes:

Excavation Damage Other Outside Force Damage All Other Causes

data as-of 3-1-2019

All Other Causes

- Corrosion
- Equipment Failure
- Excavation Damage
- Incorrect Operation
- Material Failure of Pipe or Weld
- Natural Force Damage
- Other Outside Force Damage

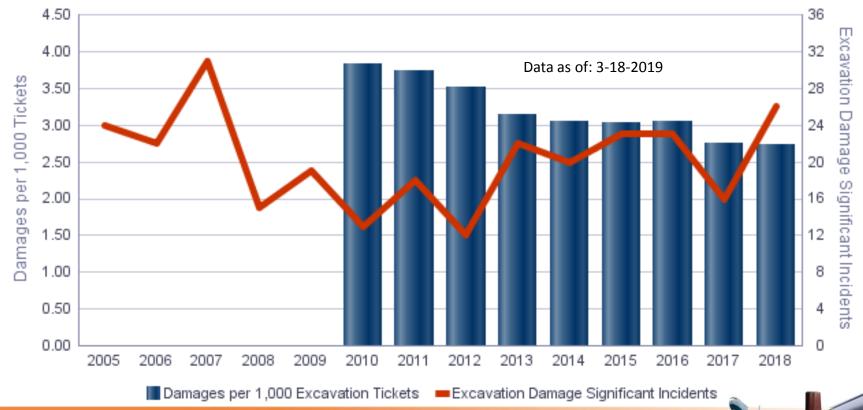


U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Gas Distribution Serious Incidents per Million Miles 2005-2018

Rate has fluctuated since 2005 with overall increase of 13%

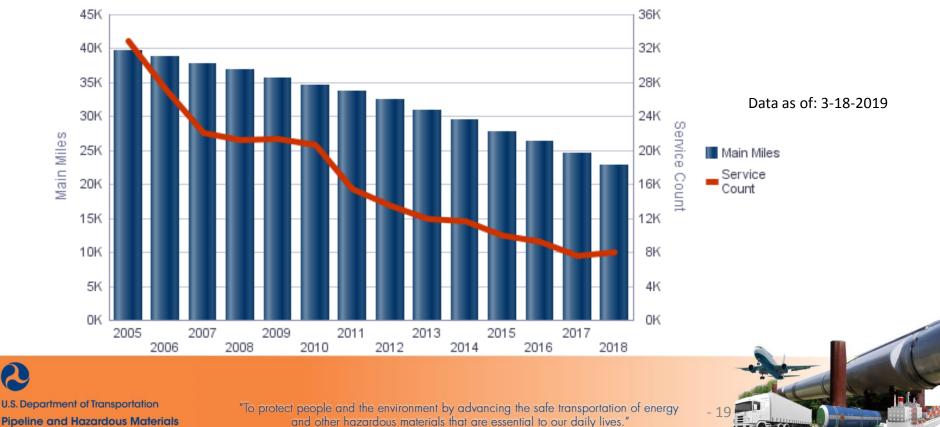


Safety Administration

Pipeline and Hazardous Materials

Gas Distribution Excavation Damage 2005-2018

Number of **Significant Incidents** caused by **Excavation Damage** has fluctuated since 2005 and increased 8% overall Rate of **Damages per 1,000 Tickets** has decreased 29% since 2010

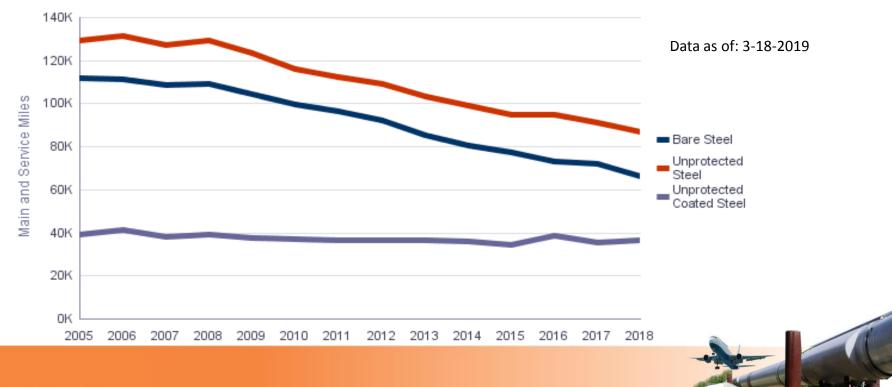


U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Gas Distribution Cast and Wrought Iron 2005-2018

Cast and Wrought Iron Main Miles have decreased 42% since 2005 Cast and Wrought Iron mains make up 1% of the total gas distribution main miles. **Cast and Wrought Iron Service Count** data quality efforts are underway Less than .1% of all gas distribution services are Cast and Wrought Iron.

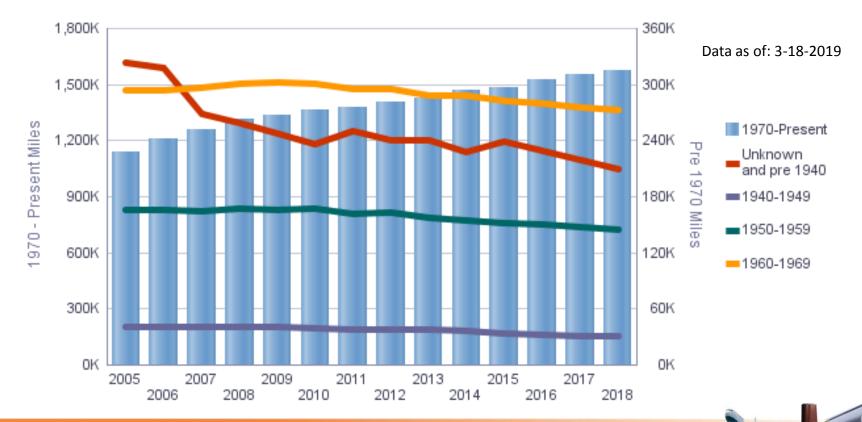


Pipeline and Hazardous Materials Safety Administration

Gas Distribution Steel Miles – Bare and Unprotected

2005-2018 Miles of Bare Steel has declined steadily since 2005

Decrease since 2005 is 40% 3% of gas distribution systems are Bare Steel
Miles of Unprotected Steel has declined steadily since 2005
Decrease since 2005 is 33% 4% are Unprotected Steel
Miles of Unprotected Coated Steel has declined since 2005
Decrease since 2005 is 7% 3% are Unprotected Coated Steel



U.S. Department of Transportation

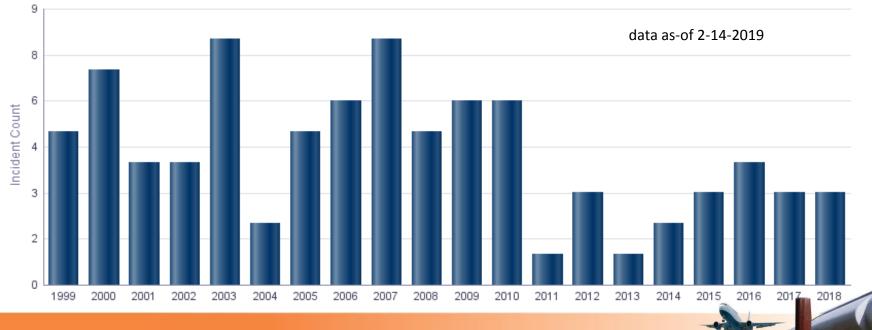
Pipeline and Hazardous Materials Safety Administration

Gas Distribution Miles by Decade Installed 2005-2018

Miles of pipeline system installed **Pre-1970** has declined 20% since 2005 29% of gas distribution systems were installed Pre-1970

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration


Gas Transmission Serious Incidents

70 60 50 Incident Count 40 30 20 10 Ο 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

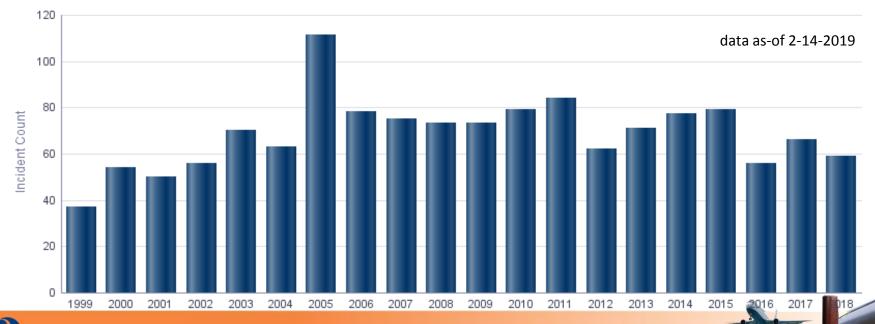
All System Types Increased in 2018

Gas Transmission

Unchanged in 2018

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

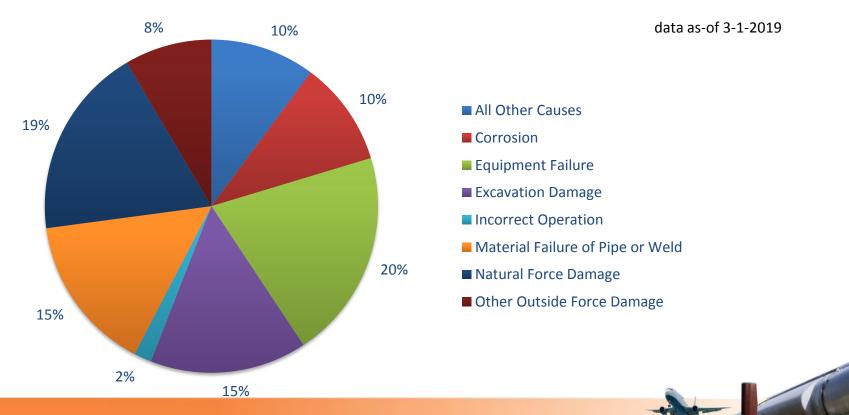

Gas Transmission Significant Incidents

400 350 300 Incident Count 250 200 150 100 50 0 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

All System Types Decreased in 2018

Gas Transmission

Decreased in 2018

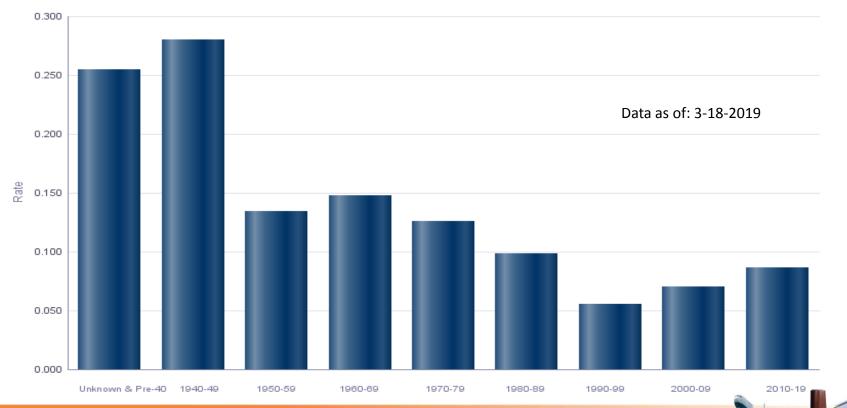

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Gas Transmission Significant Incidents

CY 2018 Leading Causes:

Equipment Failure Natural Force Damage Material Failure of Pipe or Weld & Excavation Damage

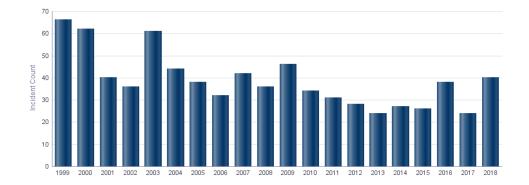


U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

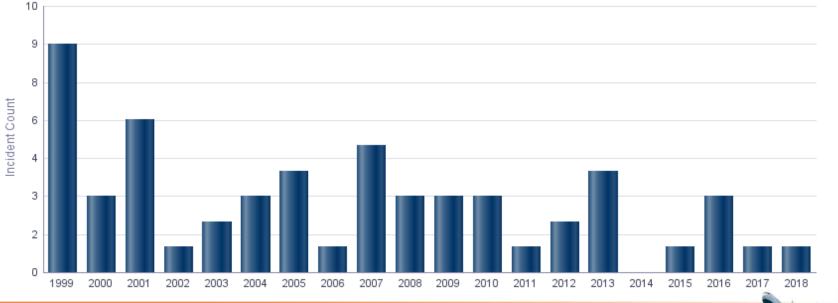
Gas Transmission Onshore Pipeline Significant Incident Rates per Decade 2005 - 2018 - Incidents per 1,000 Miles

"Unknown and Pre-1940" decade leading cause is Corrosion "1940s" decade leading cause is Material Failure of Pipe or Weld "2010s" decade leading cause is Equipment Failure



U.S. Department of Transportation

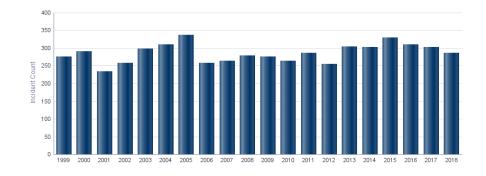
Pipeline and Hazardous Materials Safety Administration


Hazardous Liquid Serious Incidents

All System Types Increased in 2018

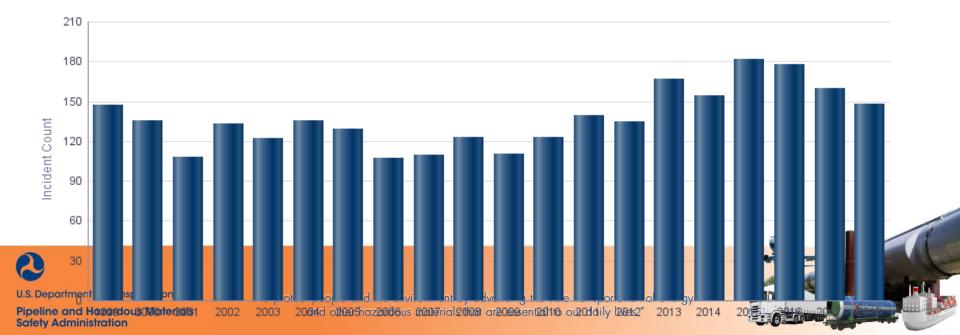
Hazardous Liquid Unchanged in 2018

data as-of 2/14/2019



U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration


Hazardous Liquid Significant Incidents

All System Types Decreased in 2018

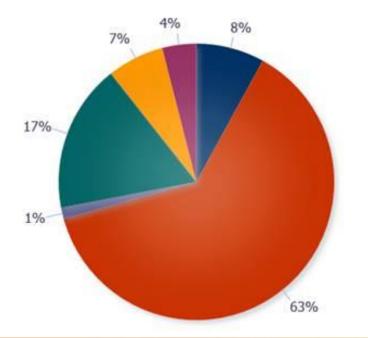
Hazardous Liquid Decreased in 2018

data as-of 2-14-2019

Hazardous Liquid Significant Incidents

CY 2018 Leading Causes: **Equipment Failure** Corrosion Incorrect Operation & Material Failure of Pipe or Weld 5% 7% 2% data as-of 3-1-2019 13% 17% All Other Causes Corrosion Equipment Failure Excavation Damage Incorrect Operation 13% Material Failure of Pipe or Weld Natural Force Damage Other Outside Force Damage 11% 32%

U.S. Department of Transportation


Pipeline and Hazardous Materials Safety Administration

Regulated Gas Gathering Significant Incidents – 2008-2017

CY 2008 to 2017 Leading Causes:

Corrosion - 63% Material/Weld/Equipment Failure - 17% All Other Causes - 8%

Significant Incident Cause Breakdown 10 Year Average (2008-2017) System Type: GAS GATHERING State: (All Column Values) Offshore: (All Column Values)

ALL OTHER CAUSES
 CORROSION
 INCORRECT OPERATION
 MATERIAL/WELD/EQUIP FAILURE
 NATURAL FORCE DAMAGE
 OTHER OUTSIDE FORCE DAMAGE

Pipeline and Hazardous Materials Safety Administration

Lessons Learned

- Operators need to know their systems well for successful risk management
- IMP is a good foundation that must be built upon
 Safety Management Systems API RP 1173

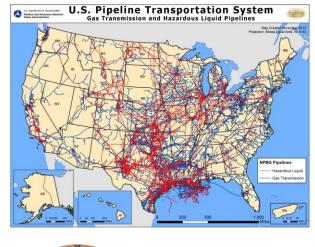
• Construction challenges remain.

Theme - "What Gets Measured, Gets Done"

Pipeline and Hazardous Materials Safety Administration

Pipeline Safety Research Development & Technology: Competitive Academic Agreement Program

CAAP


Pipeline and Hazardous Materials Safety Administration

R&D Program Drivers

- Alignment with PHMSA mission & safety risk
- Congressional Mandates
- NTSB, GAO, & IG recommendations
- Support PHMSA basic research gaps
- Input from R&D Forum & Spur Innovation
- Technical Advisory Committees oversight

PHMSA's mission is to protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Arizona State University

Colorado School of Mines

Columbia University

Georgia Institute of Technology

Iowa State University

Michigan State University

North Dakota State University

Ohio University

Ohio State University

Rutgers University

Texas A&M Engineering Experiment

Station

University of Akron

University of Alaska Anchorage

University of Buffalo

University of Colorado Boulder

University of Colorado Denver

University of Missouri Rolla

University of Nebraska Lincoln

University of North Dakota

University of Tulsa

University of Texas at Austin

West Virginia University

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

CAAP 2013-2018: 22 Universities 42 Projects \$9.2M PHMSA /\$3M Cost Share

Monitoring Project Performance

- Technical Representatives will monitor the contractor's progress in completing project scope and milestone deliverables
- Project Modifications
- Quarterly Reporting
- Technical Representatives will monitor both federal and cost sharing on their project(s)

Pipeline and Hazardous Materials Safety Administration

https://primis.phmsa.dot.gov/matrix/

😑 🔄 Mttps://primis.phmsa.dot.gov/matrix/PrjHome.rdm 🔎 👻 🔒 🙋 🛛 🐼 Research & Development P... 🗙 📑

-₩ ☆

🟠 🔻 🛐 👻 🖃 🖶 👻 Page 🕶 Safety 🕶 Tools 💌 🙆

File Edit View Favorites Tools Help

- 🍰 🔕 U.S. Department of Transp... 🏧 77469 Weather Forecast a... 🧠 E2 Solutions - CW Govern... 🏧 eCFR — Code of Federal R... 複 Fed Travel Travel plannin...

Project Search

Modern Search

Advanced Search..

Historical Search.
 RD Program

MIS Home Page
 Public R&D Page
 Final Reports
 Library

My Pages

 Questions and Comments
 Print-Friendly
 Log In...

Development of a Prediction Model for Pipeline Failure Probability Based on Learnings from Past Incidents and Pipeline Specific Data using Artificial Neural Network (ANN)

Main Objective

To develop a knowledge based predictive model to assess pipeline failure through

- a. Learning about causes behind pipeline failure: Conducting root cause analysis of past incidents to identify those factors that have to potential to contribute to failure. The findings are to be specific to the extent that they can be applied into a predictive model.
- b. Implementation of learning to predict failure: Utilizing the learnings about contributing factors behind pipeline failure to develop a predictive model based on artificial neural networks that monitors current existing conditions to determine dynamic failure probability of a pipeline

Public Abstract

On-site inspection, laboratory analysis and mechanical testing may to a certain extent provide information regarding likely failure possibility of a pipeline if exposed to a specific condition. In reality however, a range of diverse factors including particular environmental conditions, natural calamities, terrorist acts and even deficiencies in management's attempt to maintain the integrity can simultaneously influence pipeline operations and cause early failure. Influence of these numerous factors altogether are difficult to understand and predict and hence a deterministic prediction of failure based on laboratory findings and inspections can be misleading. Which factors can contribute to pipeline failure and to what extent they may contribute can be understood from root cause analysis of past incidents for better assessment and prediction of pipeline failures. Since a large variety of causes may arise from analysis of all past incidents, it

Fast Facts				
Research Award Recipient:	Texas A&M Engineering Experiment Station			
	400 Harvey Mitchell Parkway South Suite 300			
	College Station, TX 77845-4375			
AOR:	Joshua Arnold, joshua.arnold @ dot.gov, 202-366-6085			
	Bill Lowry, Bill.Lowry @ dot.gov, 713-272-2845			
Contract #:	693JK31850011CAAP			
Project #:	789			
Researcher Contact Info:	Dr. James Holste			
	979-845-3384			
	j-holste @ mail.che.tamu.edu			
Downloads of Project Reporting				
Since Jan 1, 2017	35			
Financial and Status Data				
Project Status:	Active			
Start Fiscal Year:	2018 (09/28/2018)			
End Fiscal Year:	2021 (09/28/2021)			
PHMSA \$\$ Budgeted:	\$300,000.00			

is not possible to rely solely on experts to develop a model for pipeline failure that incorporates all the finding from the analyses of past incidents. For such cases, utilization of artificial neural network seems promising. The suitability of ANN for this purpose lies in its ability learn from past records to produce a predictive model, model complex non-linear behavior that may exist in any socio-technical system, recognize or classify patterns in behavior and interaction of various contributing factors, and tolerate noises and deal with large data. Although artificial neural network has been used in the past for prediction of pipeline conditions, none of the models considered contribution of human and organizational factors behind failures. Yet, most root cause analyses find such factors as causes behind incidents. Current proposal looks at integrating information about technical, operational, human and organizational factors that have contributed to past incidents with current pipeline specific conditions to develop a model that utilizes artificial neural network to predict the failure probability.

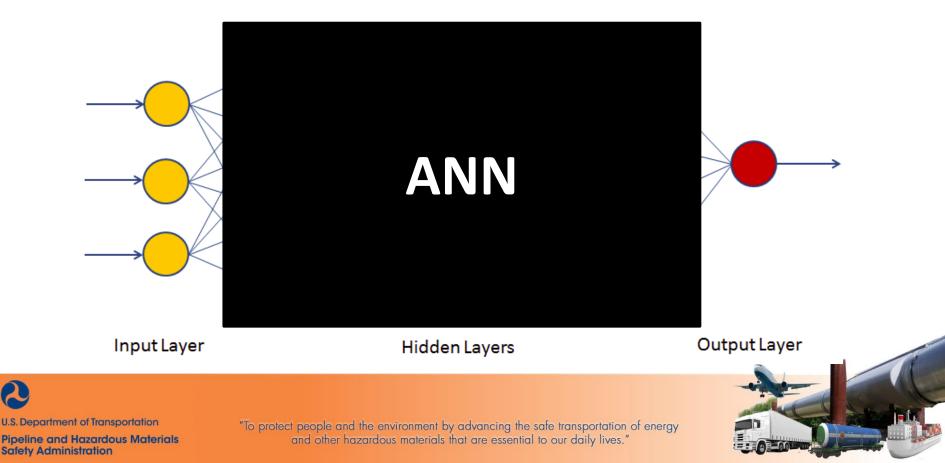
QUARTERLY STATUS REPORTS

1st Quarterly Report

PHMSA693JK31850011CAAPQUARTERLYREPORTY1Q1.PDF (90,047 bytes) [VIEW] [DOWNLOAD/SAVE...]

2nd Quarterly Report

PHMSA693.IK31850011CAAPOUARTERI YREPORTY102 PDF (99-140 bytes) IVIEW IDOWNI OAD/SAVE_1



U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Artificial Neural Networks (ANN)=Set of algorithms(mathematical structure) capable of recognizing patterns and representing complex processes

Risk-Based, Data Informed Inspections

337-

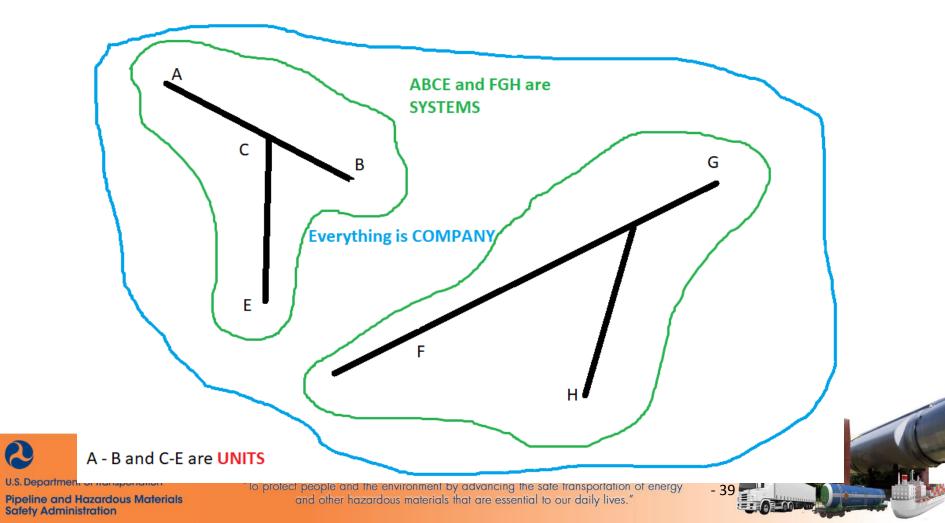
U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Step 1 Data Analysis – At the National Level

Step 2 Risk Prioritized List of Systems

Step 3 Second Level Data Evaluation – At the System Level

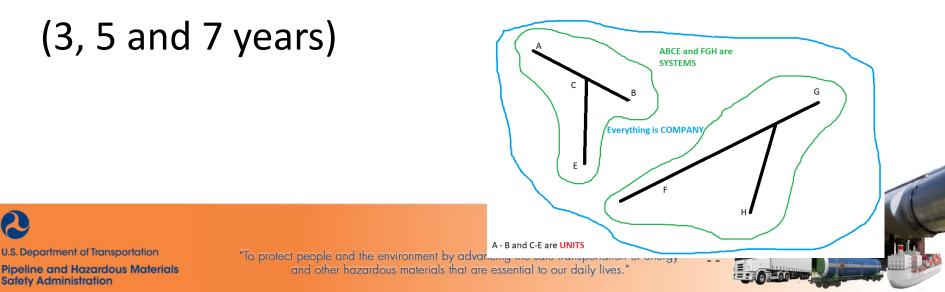

Step 4 Tailored, Risk Informed Inspection Protocol

Pipeline and Hazardous Materials Safety Administration

Data Analysis – National Level Pipeline data is tracked at the UNIT, SYSTEM and COMPANY level.

Data Analysis – National Level

 For all units in an inspection system, a unit risk score is generated based on known risk factors, i.e. bare steel, seam type, incident history, enforcement, etc.


 Consequence calculations take into commodity, proximity to high consequence areas like drinking water, population centers, and ecological areas, etc.

Pipeline and Hazardous Materials Safety Administration

Data Analysis – National Level

- The inspection <u>system</u> risk score is the average of the risk score for the units within the inspection system.
- Each inspection system risk score is assigned to one of three risk tiers, each with a maximum time since last inspection (TSLI).

Steps 3 and 4

- Steps 1 and 2 produce an annual risk ranked list of systems for inspection.
- An Inspection Team meets with the company to conduct a "Screening" session to make sure key data points have not changed.
- The Team then identifies the most risky areas for the system using data, experience and other factors.
- The Team creates a tailored inspection protocol, from over 2400 inspection questions, that will add an additional focus on risk areas, such as corrosion, cracking, operational controls, training, etc.

Pipeline and Hazardous Materials Safety Administration

PHMSA Website Locations for Regulatory Status

Interpretations (Search by date or regulation)

http://www.phmsa.dot.gov/pipeline/regs/interps

Special Permits and State Waivers

http://www.phmsa.dot.gov/pipeline/regs/special-permits

Rulemakings (tabular with links to detail)

http://www.phmsa.dot.gov/pipeline/regs/rulemaking

Advisory Bulletins (tabular with links to detail)

http://www.phmsa.dot.gov/pipeline/regs/advisory-bulletin

The Significant Rulemakings Report

https://www.transportation.gov/regulations/report-on-significant-rulemakings

Pipeline and Hazardous Materials Safety Administration

Additional PHMSA Website Locations

Pipeline Technical Resources

https://primis.phmsa.dot.gov/ptr.htm

Meetings http://primis.phmsa.dot.gov/meetings/

Electronic Reading Room

http://www.phmsa.dot.gov/foia/e-reading-room

Stakeholder Communications

http://primis.phmsa.dot.gov/comm/

PSA 2011 Reports and Studies

https://www.phmsa.dot.gov/pipeline/psa/related-reports-and-studies

Pipeline and Hazardous Materials Safety Administration

Additional PHMSA Websites- Pipeline Technical Resources

https://primis.phmsa.dot.gov/ptr.htm

- Alternative MAOP
- Cased Crossings & Guided Wave Ultrasonics (GWUT)
- Class Location Special Permits
- Control Room Management (CRM)
- Gas Distribution Integrity Management Program (DIMP)
- Gas Transmission Integrity Management (GT IM)
- Hazardous Liquid Integrity Management (HL IM)
- High Volume Excess Flow Valves (EFV)
- Low Strength Pipe
- Operator Qualification (OQ)
- Pipeline Construction
- Research & Development (R&D)
- Public Meetings
- Regulations & Interpretations

Pipeline and Hazardous Materials Safety Administration

https://primis.phmsa.dot.gov/gasimp/index.htm

	Pipeline and	t of Transportat Hazardous Mate	ion trials	203	Pij	peline Te		esources
Home	Alt MAOP	Cased Crossings and GWUT	Class Location	CRM	DIMP	Gas IM	HL IM	High Volume EFV
Low Strength Pipe	LNG Facility Siting	Q	Pipelin Construct		Public eetings	R&D	RMWG	Underground Natural Gas Storage

Rectangular Ship

Gas Transmission Integrity Management

Gas IM Menu

	Home
	Key Documents
	Fact Sheet
	FAQs
	Inspection Protocols
-3	Performance Measures
	Flowchart

This site is administered by the Pipeline and Hazardous Materials Safety Administration (PHMSA). It provides information concerning the Gas Transmission Integrity Management Rule (49 CFR Part 192, Subpart O), commonly referred to as the "Gas IM Rule." The Gas IM Rule specifies how pipeline operators must identify, prioritize, assess, evaluate, repair and validate the integrity of gas transmission pipelines that could, in the event of a leak or failure, affect High Consequence Areas (HCAs) within the United States. HCAs include certain populated and occupied areas.

For an overview of the progress being made under the Gas IM Rule, please see our <u>Performance Measures</u> page. There you will find graphs and charts, which depict progress and other aspects of rule implementation. You will

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Thank you.

William (Bill) Lowry, PE Community Liaison

bill.lowry@dot.gov

https://www.phmsa.dot.gov/about-phmsa/offices/officepipeline-safety

Pipeline and Hazardous Materials Safety Administration