OPTIMIZATION AND SCALE-UP TESTING OF COMPOSITE REPAIR TECHNOLOGIES

Brad Whelan

Engineering Project Manager – US and Canada

OVERVIEW

- Who We Are
- History
- Background
- Repair System and Tests
- Preliminary Testing (Coupon)
- Full-scale Testing (Burst and Cyclic)
- Conclusions

WHO WE ARE

- Manufacturer of composite materials designed to comply with ASME, ISO and ACI standards in addition to solutions for protecting directional drill piping
- State-of-the-art, ISO 9001-certified manufacturing and R&D facility in FL
- Solution driven products are backed by in-house R&D, engineering, training and site support departments. Also offer accredited continuing education courses

R&D Manufacturing Training

HISTORY

- China Airlines Flight 611 Taiwan to Hong Kong
- February 7, 1980
 - > Tail strike on landing
- May 25, 2002
 - Crash due to metal fatigue and improper repair killing all 225 on board

BACKGROUND

- Increased composite material usage leading to more testing programs and awareness
- Understanding small changes in composite make-up
- Many testing focused only on "burst testing"
- This testing was to focus on the effect of the fibers within the repair system on the defect to optimize the two as a system

Anomaly Type / Environment	Current Industry Validation Level of Composite Repair Systems				
Corrosion	Well documented				
Dents	Well documented				
Wrinkle Bends	Documented				
Cracks	Limited				
High Temperature (up to 100°C / 212°F)	Limited				

FABRIC AND TEST MATRIX

- → Bi-directional E-glass (0/90, stitched) with 2-part epoxy
 - Varying additions of load transfer chopped strand mat
- Coupon-level
 - Tensile, Flexural, Interlaminar Shear Strength testing
 - > Strength, Modulus, and Elongation/Displacement

Full Scale

- Burst test following two five minute pressure holds at MAOP (1,778 psi) and 100% SMYS (2,470 psi)
- Cyclic tests ranging from 36-72% SMYS (890-1,780psi) at 6 cycles per minute with a target of 275,000 cycles

FABRIC AND TEST MATRIX

	Ratio of Fiber Hoop:Axial	Load Transfer CSM Addition (oz/yd^2)	Coupon Level Tests	Full Scale Tests	
Group 1	70:30		Tensile	1	-
Group 2	80:20	0, 4, 8, 12	Flexural	Burst	Cyclic
Group 3	90:10		ILSS	Burst	-

COUPON TESTING

- Composite design from industry standards and past testing results used for comparison purposes
- Tensile modulus and elongation to failure identified as critical elements from design perspective
 - Other elements met by the polymer alone (i.e. temperature limits, viscosity, etc.)
- This testing was to focus on the effect of the fibers within the repair system and to optimize that piece of the system

COUPON TEST DISCOVERIES

Tensile Testing

Elongation to failure tended to increase with addition of chopped fiber (preferable for long-term cyclic testing)

Flexural Testing

- Failure mode of the 0 and 12 oz/yd² samples was primarily fiber breakage
- Failure mode of the 4 and 8 oz/yd² samples was primarily delamination (preferred method of failure)

ILSS Testing

Not a significant difference with different percentages of reinforcement

FULL-SCALE PRESSURE TEST

- Based on results and discoveries in coupon testing:
 - > Test group #1 (70:30) was eliminated entirely
 - Test group #s 2.2, 2.3, 3.2, and 3.3 chosen to continue (80:20 and 90:10 with 4 and 8oz/yd² of CSM)
 - Test group #3.1 (90:10 with no CSM) was also chosen but only to serve as a baseline comparison for the other test groups
- Full-scale pressure test conducted on each sample and biaxial strain data collected
- Pipe sample and defect created according to drawing using a 12.75-inch x 0.375-in, Grade X52 pipe
- Strain gauges applied at marked areas

FULL-SCALE PRESSURE TEST

REPAIR INSTALLATION

BURST TEST RESULTS

- Failure pressures noted were all similar in value (within 4% of the average of all tests)
- Nothing conclusive given by the burst pressure burst therefore emphasizing the importance of collecting strain data
- Determine and rank burst performance for each sample according to strain

BURST TEST RESULTS

- For strain data, benchmark targets set based on existing testing from PRCI
 - > 3,200 microstrain at MAOP
 - > 5,400 microstrain at SMYS
- Based on the strain readings, all repairs exceeded targets
- One sample clearly stood out and appears to be the 'best' overall performer

COUPON AND BURST TESTS

	Tensile Results (average)					
	Strength	Modulus	Elongation to			
	(ksi)	(Msi)	Failure (%)			
Group 1 (70:30)	61.8	3.4	2.2			
Group 2 (80:20)	74.7	2.1				
Group 3 (90:10)	66.2	3.6	2.0			
	Flexural Results (average)					
	Failure Stress	Modulus	Displacement			
	(ksi)	(Msi)	(in)			
Group 1 (70:30)	78.6	3.1	0.228			
Group 2 (80:20)	77.3	3.5	0.193			
Group 3 (90:10)	91.0	3.7	0.252			
	ILSS	S Results (av	erage)			
	Failure Stress	Modulus	Displacement			
	(ksi) (Msi)		(in)			
Group 1 (70:30)	4.7	3.5	0.0380			
Group 2 (80:20)	4.7	3.5	0.0390			
Group 3 (90:10)	4.8	3.9	0.0365			

Burst Results					
Pressure					
(average)					
-					
4510					
4631					

Defect yield expected at 765.

PRESSURE TEST RESULTS

CYCLIC PRESSURE TEST

- Based on pressure test results, test group #2.3 (80:20 ratio with 8oz CSM) chosen to undergo cyclic pressure testing
- Strain measurements taken to identify maximums, minimums, and strain range (Δε) to identify long-term effects on repair system
- Target a strain range below 1500με. Past programs indicate the composite will not degrade significantly due to pressure cyclic fatigue below this range.

- All pipe samples completed full "run-out" of 275,000 cycles with no failure or visual damage/wear identified.
- Relatively constant strain range over long-term usage.
- Identified early changes, considered "break-in" period of the system while reaching equilibrium of load distribution.
- Optimized system achieved an average strain range of 1000με (30% below industry findings) indicating longterm performance will be successful.
 - Target was 1500με or less.

Cycle Count	Gauge Location	Hoop Strain Measurements (με) and Strain Range (Δε)								
		Pipe #14			Pipe #15			Pipe #16		
		Min	Max	Δε	Min	Max	Δε	Min	Max	Δε
1001/	Defect center	1424	2404	975	1076	1992	916	1345	2476	1131
100K	2" off center	2041	3058	1015	1135	1995	860	1416	2391	975
190K	Defect center	1549	2524	980	1148	2053	905	1528	2660	1132
1901	2" off center	2293	3308	1017	1155	2053	8 9 8	1491	2456	965
250K	Defect center	2789	3789	1000	1186	2101	915	1651	2784	1133
250K	2" off center	3279	4316	1037	1199	2075	876	1548	2524	976
275K	Defect center	Note ¹	Note	1051	1150	2046	896	1628	2730	1102
2/5K	2" off center	Note	Note	1089	1169	2042	873	1514	2471	957

FULL-SCALE TEST RESULTS

- Comparing to identical test on a product by GTI in the 1990's:
- ◆ In burst testing, reduced strain in the defect region by 50% at pressures up to 2000 psi and as pressure increased this reduced strain by over 70%.
- Also, when the pressure was returned to zero the strain went back to zero showing no permeant yielding in the defect zone.
- In cyclic testing, reduced max strain in defect region by 50%.
 - > Relatively constant strain range over long-term usage

CONCLUSIONS

- Progression from coupon level to full scale testing to optimize a fiber architecture that reduces the strain in severe corrosion defects considering aggressive loading conditions
- Indications show slight variations can have great impact on the repair system performances
- Historical data, ASME and ISO standards give baseline requirements but further development is needed to verify applicability of the solution

WHAT DOES GOOD LOOK LIKE IN 10 YEARS?

- Solution driven products optimized to address an ever expanding set of deficiencies
- Legacy, 'work horse' composite repair systems will see reduced roles, some retired
- Industry wide procedures and protocols developed beyond ASME/ISO
 - Regulators
 - > Installers
- Continued collaboration between manufacturers along with operators and manufacturers

THANK YOU FOR YOUR TIME!

Brad Whelan

Engineering Project Manager – US and Canada Riviera Beach, FL | Phone: 561.683.6992 | Fax: 561.683.8366

www.neptuneresearch.com